Computertomographie (CT), Teil 7

Bisher haben wir angenommen, dass ein Detektor-Pixel entweder die komplette Lichtintensität »sieht«, oder gar nichts (Schatten). Wie so oft ist diese Schwarz-Weiß-Malerei unrealistisch.

Warum wird es finster?

Ohne Objekte zwischen Strahlungsquelle und Detektor sieht jeder Detektor-Pixel die volle Lichtintensität (Helligkeit) I_0. Mit Objekten dazwischen sieht dieser Pixel die Intensität I, die im Allgemeinen kleiner als I_0 ist.

Weiterlesen „Computertomographie (CT), Teil 7“

Computertomographie (CT), Teil 6

Eine Linie aus kleinen Quadraten

In Teil 5 haben wir die Rasterung besprochen und gesehen, wie man Punkt-Koordinaten in der »realen« Welt in Pixel-Koordinaten umrechnet. Jetzt müssen wir diese Punkte durch eine Linie aus Pixeln verbinden (s. Abb. 1). Die Pixel, in denen die Punkte P und Q liegen, gehören auf jeden Fall dazu. Aber welche noch?

Linie1
Abb. 1: Durch welche Pixel geht die Verbindungslinie von P und Q?

Dieses Problem trat schon zu Beginn der Computergraphikära auf und wurde in den verschiedensten Varianten gelöst. Im Folgenden besprechen wir eine Variante des Bresenham-Algorithmus für Linien.

Weiterlesen „Computertomographie (CT), Teil 6“

Computertomographie (CT), Teil 5

Der diskrete Charme der Pixel

Wie schon gesagt, muss man für die Rückprojektion der Schattenbilder ein Pixel-Gitter über die reale physikalische Szene legen (s. Abb. 1). Man spricht dabei von Rasterung. Nachdem es sich um eine kreisförmige Szene mit Radius r handelt, ist das Gitter sinnvollerweise quadratisch, und die Anzahl der Pixel in x– und y-Richtung wird gleich gewählt, also n_x = n_y = n. Die Pixel sind dann Quadrate mit einer realen Seitenlänge von s = 2 r / n. Um die Formeln etwas zu vereinfachen wählen wir für n eine gerade Zahl, was keine große Einschränkung bedeutet.

Gitter1
Abb. 1: Das kreisförmige Gebiet mit Radius r wird mit einem (8×8)-Pixelgitter überdeckt. Der Ursprung des Pixel-Koordinatensystems befindet sich links oben. Die i-Achse zeigt wie die x-Achse nach rechts, die j-Achse zeigt entgegen der y-Achse nach unten.

Weiterlesen „Computertomographie (CT), Teil 5“

Computertomographie (CT), Teil 4

In Teil 3 haben wir aus unseren »Schattenmessungen« ein sehr grobes Bild unserer Objekte rekonstruiert. Im Folgenden sehen wir uns einige bessere Rekonstruktionen an.

BackProjParallel_512_0.5Deg_128x128
Abb. 1: (128×128)-Pixel Rekonstruktion der Messung mit einem 512-Pixel Detektor und 0.5° Winkelauflösung.

Weiterlesen „Computertomographie (CT), Teil 4“

Computertomographie (CT), Teil 3

Rückprojektion (backprojection)

In Teil 1 ging es um die grundsätzliche Funktionsweise eines CT. In Teil 2 haben wir verschiedene Radon-Transformationen unserer Objekte gesehen.

Jetzt geht es darum, wie wir die Lage und Form unserer Objekte aus der Radon-Transformation rekonstruieren können. Es gibt mehrere Methoden, aber eine der einfachsten – und auch (mit Verbesserungen) in medizinischen CTs verwendete – ist die Rückprojektion (backprojection).

Weiterlesen „Computertomographie (CT), Teil 3“

Computertomographie (CT), Teil 2

Radon-Transformation

In Teil 1 haben wir gesehen, das bei einem CT »Schattenbilder« aus verschiedenen Richtungen gemessen werden. Alle Schattenbilder aus verschiedenen Richtungen zusammen nennt man die Radon-Transformation unserer Objekte.

Weiterlesen „Computertomographie (CT), Teil 2“

Computertomographie (CT), Teil 1

Dieser Eintrag startet eine Serie von Beiträgen zur Computertomographie. Ziel ist es, im Rahmen einer HTL-Diplomarbeit ein (2-dimensionales) CT mit sichtbarem Licht zu bauen.

Setup

Das Grundprinzip ist in Abb. 1 gezeigt. In einer Ebene befinden sich verschiedene Objekte (blau), die mehr oder weniger Licht durchlassen. Aus einer bestimmten Richtung fallen parallele Lichtstrahlen (rot) ein, wodurch die Objekte einen Schatten auf einen Lichtdetektor werfen. Im medizinischen Bereich handelt es sich bei dem Licht um Röntgenstrahlen, aber das Grundprinzip ist für sichtbares Licht identisch.

SetupParallel_150dpi
Abb. 1: Parallele Lichtstrahlen (rot) beleuchten drei undurchsichtige Objekte (blau), wodurch auf dem Detektor ein Schattenbild entsteht. Dieses Schattenbild ändert sich je nach Richtung, aus der das Licht kommt.

Weiterlesen „Computertomographie (CT), Teil 1“

Wozu Mittelwerte?

Angenommen, man hat eine Messgröße, die man durch eine Zufallsvariable X modellieren kann. Der Erwartungswert von X sei \mu und die Standardabweichung sei \sigma.

Misst man diese Messgröße mehrfach, wird man voraussichtlich verschiedene Werte erhalten, deren Streuung durch die Verteilung von X modelliert wird.

Berechnet man den Mittelwert \bar{x} dieser n Messungen, kann man ihn durch die Zufallsvariable \overline{X} modellieren. Wenn die Messungen alle voneinander unabhängig waren, gilt für den Erwartungswert des Mittelwertes

\mathscr{E}(\overline{X}) = \mathscr{E}(X) = \mu

und für die Standardabweichung (»Standardfehler«) des Mittelwertes

\displaystyle\mathscr{S}(\overline{X}) = \frac{\mathscr{S}(X)}{\sqrt{n}} = \frac{\sigma}{\sqrt{n}}\,.

Diese Formeln gelten unabhängig von der konkreten Verteilung von X; die zweite wird oft auch als »Wurzel-n-Gesetz« bezeichnet.

Weiterlesen „Wozu Mittelwerte?“

Das empirische »Gesetz« der großen Zahlen

Im letzten Beitrag haben wir gesehen, wie in einem längeren Münzwurfexperiment die relative Häufigkeit für Kopf immer näher an 1/2 herangekommen ist. Obwohl es keine Garantie dafür gibt, dass es so sein muss, ist so eine Stabilisierung von relativen Häufigkeiten und anderen Messgrößen oft zu beobachten. Diese Erfahrungstatsache nennt man das empirische »Gesetz« der großen Zahlen.

Wie kann man sich das erklären?

Weiterlesen „Das empirische »Gesetz« der großen Zahlen“

Wahrscheinlichkeiten

Wahrscheinlichkeiten sind Erwartungen – um nicht zu sagen Hoffnungen – darüber, wie oft ein bestimmtes Ereignis bei oftmaliger Wiederholung eines Zufallsexperiments (unter gleichen Bedingungen) eintreten wird. Genauer gesagt, geht es um die relative Häufigkeit eines Ereignisses.

Diese Erwartungen hängen von unserem Informationsstand ab. Wie man zu sinnvollen Erwartungen kommt, ist ein Kapitel für sich. Erwartungen können falsch sein; selbst »richtige« Erwartungen können enttäuscht werden.

Darüber hinaus ist unklar, was mit oftmaliger Wiederholung genau gemeint ist. 100-mal, 1000-mal, 1 Milliarde Mal?

Für viele Münzwurfexperimente ist es sinnvoll, eine Wahrscheinlichkeit für Kopf von 1/2 anzunehmen. Die rote Linie in der folgenden Abbildung zeigt, wie sich die relative Häufigkeit für Kopf im Lauf einer längeren Münzwurfserie geändert hat.

relHK_200dpi
Die laufende relative Häufigkeit für Kopf als Funktion der Anzahl der Münzwürfe (rote Linie). Die grün gefüllten Bereiche stellen die 1\sigma-, 2\sigma– bzw. 3\sigma-Umgebungen unserer Erwartung dar. Die horizontale Achse ist logarithmisch skaliert, um den Beginn deutlicher zeigen zu können.

Weiterlesen „Wahrscheinlichkeiten“