Computertomographie (CT), Teil 6

Eine Linie aus kleinen Quadraten

In Teil 5 haben wir die Rasterung besprochen und gesehen, wie man Punkt-Koordinaten in der »realen« Welt in Pixel-Koordinaten umrechnet. Jetzt müssen wir diese Punkte durch eine Linie aus Pixeln verbinden (s. Abb. 1). Die Pixel, in denen die Punkte P und Q liegen, gehören auf jeden Fall dazu. Aber welche noch?

Linie1
Abb. 1: Durch welche Pixel geht die Verbindungslinie von P und Q?

Dieses Problem trat schon zu Beginn der Computergraphikära auf und wurde in den verschiedensten Varianten gelöst. Im Folgenden besprechen wir eine Variante des Bresenham-Algorithmus für Linien.

Weiterlesen „Computertomographie (CT), Teil 6“

Computertomographie (CT), Teil 5

Der diskrete Charme der Pixel

Wie schon gesagt, muss man für die Rückprojektion der Schattenbilder ein Pixel-Gitter über die reale physikalische Szene legen (s. Abb. 1). Man spricht dabei von Rasterung. Nachdem es sich um eine kreisförmige Szene mit Radius r handelt, ist das Gitter sinnvollerweise quadratisch, und die Anzahl der Pixel in x– und y-Richtung wird gleich gewählt, also n_x = n_y = n. Die Pixel sind dann Quadrate mit einer realen Seitenlänge von s = 2 r / n. Um die Formeln etwas zu vereinfachen wählen wir für n eine gerade Zahl, was keine große Einschränkung bedeutet.

Gitter1
Abb. 1: Das kreisförmige Gebiet mit Radius r wird mit einem (8×8)-Pixelgitter überdeckt. Der Ursprung des Pixel-Koordinatensystems befindet sich links oben. Die i-Achse zeigt wie die x-Achse nach rechts, die j-Achse zeigt entgegen der y-Achse nach unten.

Weiterlesen „Computertomographie (CT), Teil 5“